翻訳と辞書
Words near each other
・ Clendinning Range
・ Clendon
・ Clendon Park
・ Clendon Park School
・ Clendon Thomas
・ Clenet Verdi-Rose
・ Cleng Peerson
・ Clenleu
・ Clennell
・ Clennell Hall
・ Clennell Wickham
・ Clennon Washington King, Jr.
・ Clennon Washington King, Sr.
・ Clenoliximab
・ Clenora Hudson-Weems
Clenshaw algorithm
・ Clenshaw–Curtis quadrature
・ Clent
・ Clent Castle
・ Clent Hills
・ Clentiazem
・ Clenze
・ Clențu River
・ Cleo
・ Cleo (artist)
・ Cleo (company)
・ Cleo (magazine)
・ CLEO (particle detector)
・ CLEO (router)
・ Cleo (singer)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Clenshaw algorithm : ウィキペディア英語版
Clenshaw algorithm
In numerical analysis, the Clenshaw algorithm,〔 Note that this paper is written in terms of the ''Shifted'' Chebyshev polynomials of the first kind T^
*_n(x) = T_n(2x-1).〕 also called Clenshaw summation,〔 is a recursive method to evaluate a linear combination of Chebyshev polynomials. It is a generalization of Horner's method for evaluating a linear combination of monomials.
It generalizes to more than just Chebyshev polynomials; it applies to any class of functions that can be defined by a three-term recurrence relation.
==Clenshaw algorithm==

In full generality, the Clenshaw algorithm computes the weighted sum of a finite series of functions \phi_k(x):
:S(x) = \sum_^n a_k \phi_k(x)
where \phi_k,\; k=0, 1, \ldots is a sequence of functions that satisfy the linear recurrence relation
:\phi_(x) = \alpha_k(x)\,\phi_k(x) + \beta_k(x)\,\phi_(x),
where the coefficients \alpha_k(x) and \beta_k(x) are known in advance.
The algorithm is most useful when \phi_k(x) are functions that are complicated to compute directly, but \alpha_k(x) and \beta_k(x) are particularly simple. In the most common applications, \alpha(x) does not depend on k, and \beta is a constant that depends on neither x nor k.
To perform the summation for given series of coefficients a_0, \ldots, a_n, compute the values b_k(x) by the "reverse" recurrence formula:
:
\begin
b_(x) &= b_(x) = 0, \\
b_k(x) &= a_k + \alpha_k(x)\,b_(x) + \beta_(x)\,b_(x).
\end

Note that this computation makes no direct reference to the functions \phi_k(x). After computing b_2(x) and b_1(x),
the desired sum can be expressed in terms of them and the simplest functions \phi_0(x) and \phi_1(x):
:S(x) = \phi_0(x)\,a_0 + \phi_1(x)\,b_1(x) + \beta_1(x)\,\phi_0(x)\,b_2(x).
See Fox and Parker for more information and stability analyses.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Clenshaw algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.